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Number-phase uncertainty relations 
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Depaxtment of Theoretical Physics. Palackf Univenity, Svobody 26, 771 46 Olomouc, Czech 
Republic 

Received 21 June 1995, in final form 19 September 1995 

Abstract. The minimization problem of finding the number-phase minimum uncenainty states 
(MUS) is considered and its solutions are found either numerically or. under some special 
conditians. analytically. The phase uncertainty measure is based an the Bandilia-Paul dispersion. 
The problem is treated (i) in a finite-dimensional Hilbert space and (U) for a countably infiniie- 
dimensional Hilterr space (i.e. the standard quantum h m o n i c  oscillator), with the constraint 
of a given mean photon number. The MUS relations between the photon number uncertainty 
and phase uncertainty are presented. Connections to some other minimization protilems are 
discussed. 

1. Introduction 

The uncertainty principle and uncertainty relations are among the central and most 
fundamental concepts of quantum theory. The presence of some limitations invoke questions 
such as: where is the boundary that the quantum world does not allow us to overcome? 
What are the states that reach this boundary? This paper addresses these questions with 
regards to the variables of quantum phase and photon number. 

The fact that minimizing the spread of photon (or phonon) number distribution of a 
quantum oscillator causes loss of phase information and vice versa was clear from the early 
days of quantum mechanics. Dirac was the first to try to quantify this by an uncertainty 
relation 

A$An > $ (1) 

in analogy to the well known position-momentum uncertainty relation. However, Dirac’s 
relation is problematic because it requires A@ to be larger than n for sufficiently small 
An. This relation was derived from an incorrect assumption that there exists a Hermitian 
phase operator 6 conjugated to the photon number operator h. Further investigations [l-31 
have shown that introducing operators referring to phase requires a much more sophisticated 
approach, which then leads to more complicated uncertainty relations. For example, the 
Susskind-Glogower [ I ]  cosine e and sine .? operators fulfilling the commutation relations 

[k, $1 = iC t i ,  = -ii (2) 

imply uncertainty relations 
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or a symmetric relation [3] 

(4) 
where Po is the probability of finding the oscillator in the ground state (arising from the non- 
commuting nature of e and .?). Also, in the Pegg-Bamett model [GI, which postulates 
a finite-dimensional Hilbert space, we can get a state-dependent uncertainty relation [7] 
due to the non-trivial nature of the number-phase commutator. Of course, neither of these 
relations gives a simple answer to the question: given a fixed photon number spread, what 
is the minimum phase uncertainty that quantum states can have? 

Before trying to answer this question we, should be clear about how to define the 
uncertainty. A possible way, usual in the case of Euclidean variables is to take the standard 
deviation, i.e. square root of variance, A& = m, where 

[((An)’) + ;][((AC)’) +((As)’) + ;Po] > 

R f z i r  

&(@) = 1 (6 -.(@)R)*P@) d4 (5) 

and where the mean is 

( @ ) e  = r @ d @ ) d @ .  (6) 

It has the advantage that for a pair of non-commuting variables an uncertainty relation can 
be written for the product of uncertainties-following from the Cauchy-Schwarz inequality. 
However, such uncertainty relations are often state dependent and it is difficult to present a 
universal limit, valid for all states. There is also a reason against using the variance-based 
measure of phase uncertainty following from its type of ambiguity: it is well known that 
changing the phase window [e, 0 + 2ir) over which we calculate means generally a change 
in the mean (6) and the variance (5) [SI. To overcome this disadvantage and to benefit 
from other properties, various other phase uncertainty measures were suggested, for their 
review see for example, [P, 101. A useful approach to this problem is based on integrating 
periodic functions of phase rather than the phase itself. We can calculate the mean of the 
exponential of phase and write it in the goniometric form 

where 4 is a uniquely defined phase mean and R+ is connected to the dispersion U;, a 
measure of phase uncertainty introduced by Bandilla and Paul [ll].  Here the mean is 
calculated using the phase distribution 

(e’+) = R+e“ (7) 

zir 
(e”) = e’+p(@) d@. (8 )  

The phase distribution p ( @ )  generally depends on the measurement scheme. In this work 
we will consider the canonical phase distribution, i.e. for a state I@) the phase distribution 
is p ( 4 )  = &.1(@1@)1’ and I@) = E, exp(in@)ln), which is equivalent to calculation of the 
mean using the Susskind-Glogower operators as 

(9) 
(Other phase-measurement statistics, which may be especially interesting from the 
experimental point of view are not considered here. For a review see, e.g. [12-141.) The 
dispersion is then defined as 

(10) 

(11) 

(e’+) = (@I(? + is ) [@).  

U; = 1 - R2 + 

U: = 1 - (C)2 - (S)*. 

usually it is calculated as 
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This measure of uncertainty takes values between zero and unity and is uniquely defined. 
As may be shown, for a sharply peaked phase distributions and for a properly chosen 
phase window, the variance gives similar results as the dispersion. An uncertainty relation 
containing the dispersion can be derived from (3) [SI: 

(((Ai)') +~$)ui > 4 .  (12) 

A$ = arcsinq . (13) 

In this paper we will use a phase uncertainty measure A$ based on the dispersion and 
defined as [15] 

Similarly to dispersion this measnre is uniquely defined; it takes values between zero and 
n /2  and for sharply peaked distributions it yields similar results to the square root of 
variance. In contrast to the dispersion it is measured in radian-and as discussed in 
[15] has a simple physical interpretation based on the analogy between probabilistic and 
mechanical quantities. 

Let us briefly mention this point, treated in detail in [U].  As is well understood, the 
mechanical analogue of the mean value is the centre of mass, and similarly the analogue 
of the dispersion is the moment of inertia with respect to the centre of mass. Suppose 
a one-dimensional body with unit mass, described by the mass density p(n) ;  considering 
only translational motion we can substitute for this body by a unit mass point located at 
the centre of mass (x). If we consider both translational and rotational motion of the body, 
we can substitute it by two mass points (each with mass 4) located at ( x )  i m, where 
D ( x )  = l ( n  - (n))'p(x)dx is the moment of  inertia.^ Continuing this analogy to the phase 
variable we can imagine a ring with unit radius and unit mass, its mass density being 
described by p ( @ ) .  The centre of mass of this ring has polar coordinates R4 and 6 given 
by (7), and (8). The moment of inertia with respect to the centre of mass is given by the 
dispersion U: (10) and the rotational properties of the ring (about axes perpendicular to the 
plane of the ring) are equivalent to those of two one-half mass points located on the ring in 
positions 6 &A@, where A$ is given by (13). Thus using the window-dependent mean (6) 
and variance (5) for describing phase properties corresponds to 'cutting' the ring at some 
point 0, making it straight and then finding its centre of mass and moment of inertia. As 
a contrast, using the quantities 4, U: and A@ keeps the circular shape of the ring when 
describing its properties. This may be said as a response to Hall [9] who lacks a physical 
interpretation of the Bandilla-Paul dispersion. 

For this measure the Chebyshev inequality can be obtained in the form [15] 
1 - R: 

(14) - - sin2(A$) 
p('"''E)' ~ + c ~ ~ ~ ( A @ ) - ~ c o s ( A $ ) c o s E  1 +  R;-2R+cos~ 

which connects the uncertainty as a measure of width with the probability to be in an interval 
centred in the mean value (here E E (0, n) and P means the probability of the event in 
the parentheses). Note that the right-hand side of equation (14) is the well known Poisson 
kernel. 

An uncertainty relation, equivalent to (12), can be obtained for this uncertainty measure 
in the form 

A n t a n A 6 3  4. (15) 
However, this relation (similarly to (12)) is too weak, which means that it allows wider 
class of points (An, A$) than is actually possible; e.g. there are no states for which the 
equality holds. There must be some stronger limitation and it is the aim of this paper to 
find it-together with the states that reach the limits. 
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The paper is organized as follows. In the next section known methods for finding the 
minimum uncertainty states are discussed and a variant of one of the methods is presented, 
suitable for solving the above problems. Section 3 is devoted to finding the uncertainty 
relation in the finite-dimensional Hilbert spaces and then in the limit N + 00, i.e. in the 
case of the Pegg-Bamett model. The last section discusses the uncertainty relations in the 
case when a mean photon number is given. 

2. A method for finding minimum uncertainty states 

There are two usual methods for finding the (variance-based) minimum uncertainty states 
(MUS); both assume the uncertainty relation in the form where the product of the variances 
is greater than some limit 116, 21. (In this paper we use the term MUS for every state 
that minimizes the uncertainty of one quantity when the uncertainty of the other quantity 
is given; in the terminology introduced by Aragone et a f  [17] such states would be called 
intelligent states, the term MUS being reserved for states minimizing the product OF the 
uncertainties.) Let us consider two non-commuting quantities 2, j, then 

((Ai)’)((AS)’) > alKi, 91)1’+ al(IAi. AS))I’ (16) 
where A? = ? - ( x )  and AT = 9 - (y). The MUSS, with respect to the relation (16). 
are such states for which the mean anticommutator (i.e. quantum covariance) vanishes, 
({A?, AT]) = 0, and the inequality turns into an equality. The direct method assumes 
that the commutator is a c-number; the equality in (16) then appears for such states I@) for 
which Ail1lf) = cAFI@), where c is a constant. The condition of tero mean anticommutator 
implies that c = -iy, where y is real. Thus these requirements lead to the eigenvector 
equation 

(A?+iyA$)l$) = O .  (17) 
There are three real parameters here: ( x ) ,  (y) and y .  Changing y and solving (17) we 
obtain various Muss with the means ( x )  and (y) .  

For quantities whose commutator is a q-number and which then yield state-dependent 
uncertainty relations, Jackiw 1161 derived an unalytic method for finding MUS. Setting the 
variation of the uncertainty product t o ~ b e  zero, 6(((A2)2)((Aj)’)) = 0, he obtained an 
Euler-Lagrange equation for I@) (actually an eigenvector equation): 

Here we have four real parameters: ( x ) ,  ( y ) ,  ((Ax)’) and ((Ay)’), the last two being 
connected by the uncertainty relation with equality sign. Solutions of (18) are stationary 
states of the uncertainty product; among them we have to choose the one with the minimum 
product. 

It may be worth noting that the coherent states and the two-photon coherent (squeezed) 
states, which are Muss with respect to x and p ,  can be identified either as eigenstates of 
some generalized annihilation operators (as in the direct method) or as ground states of 
hannonic oscillator Hamiltonians (as in the analytic method). 

The method used here is essentially based on the Jackiw analytical method we will 
seek for ground states of some operators, which we call ‘uncertainty Hamiltonians’. The 
main idea is as Follows. Let, under some constraints, the uncertainty A? of a quantity q 
be defined as Aq f,((fi,)), where f, is some increasing function and E, is a Hermitian 
operator with spectrum limited from below. (As an example we can take as the position 
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uncertainty the function fx(( . tz))  = under the c o t p i n t  that ( x )  = 0, or as the 
phase uncertainty the function fm( ( - c ) )  = -arccos(-C) under the constraint of zero 
mean phase.) The constraints here play the role of parameters in the above methods. The 
minimum uncertainty states with respect to a pair of quantities q and s then can be found 
as the ground states Iqr) of the uncertainty Hamiltonians 

(19) 
, B”&) = ckq + (1 - c k  

&(t) = fq((hl$l$c))  =.f(Wclbl@c)). (20) 

where 
then be written as a parametric equation 

is a parameter between zero and unity. The uncertainty relation for the MUSS can 

The uncertainty relation then says that no state with uncertainty As = As(() for some 
5 can have less value of Aq than Aq(c). The proof is straightforward suppose such 
a state I$?) for which As = As($) and Aq e Aq(c). Then (@?I&ll/l?) = (&lgJl/lc) 
and (@?lbql$?) < (qclbql@e), due to increasing of f,. For such state it would then be 
($?lfiunc($)l$?) < (@~lfiuncl@~) which is a contradiction of the assumption that I&) is the 
ground state. 

This method may be easily generalized for finding relations F a n g  higher’numbers of 
positive-definite quantities; the Hamiltonian (19) would then depend on more parameters. 

A very similar method for finding various extrema1 states was also used by other authors 
[IS-241, however, their idea was based on solving extremum problems using Lagrange 
multipliers. Also the conditions for the extrema were not the same in these works. We will 
discuss some of their results with respect to the problems presented here. 

Solutions of the ground-state problems of the Hamiltonians (19) can easily be found 
numerically with arbitrary precision if we express the Hamiltonian in the Fock basis and 
truncate the expansion at a sufficiently large photon number. Another possible way is to 
work in a finite-dimensional Hilbert space and observe the behaviour of the solutions when 
the dimension tends to infinity, as is the idea of the Pegg-Barnett model. In bo@ cases we 
can use standard software routines for finding eigenvalues and eigenvectors of matrices. It is 
also possible to work with familiar approximate methods for solving ground-state problems, 
like the perturbation method or the Ritz variational method. 

3. Number-phase uncertainty relations in finite-dimensional Hilbert spaces 

We will lirst use the method of the uncertainty Hamiltonian for finding the MUS in a finite- 
dimensional Hilbert space. Let us consider such an N-dimensional space to be spanned by 
eigenvectors of two complementary operators A and 4. The interpretation of these operators 
is quite arbitrary; however, finally in the limit N + 00 we will treat them as the Pegg- 
Barnett operators of photon number and phase. Another possible interpretation, perhaps 
better than number and phase in the case of N finite, is connected to a model of a particle 
moving along a circle with a finite number of sites: one quantity would refer to the panicle’s 
position, whereas the other to its discrete (angular) momentum. The eigenvectors of these 
operators are connected by the discrete Fourier transform 

,-. . 
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Figure 1. 'Number uncertainly' in a finite-dimensional Hilbetr space. The definitions (22)-(25) 
are with respect to the circular topology of the space. 

(These relations in this or similar form are discussed either in the original papers on 
the Pegg-Barnett formalism, e.g. [U], or in papers dealing with a dynamics in finite- 
dimensional Hilbert spaces, e.g. [25, 261.) We can notice the natural topology of such a 
model-after the last eigenstate (I+,v-l) or IN - 1)) the first one (I&) or IO)) follows. It 
suggests that for measuring uncertainties~of such quantities we should use a similar measure 
as for angular or phase variables-here we will work with the measure based on (11) and 
(13). Let us call 'normalized dispersions' the quantities U$ and U,' calculated as 

U$ = 1 - RZ (22) 2 
m u," = 1 - R, 

where 

Here for a state given by the density operator 6 the probabilities are 

p d n )  = (nlbln) P&) = (hIBIQd. (24) 

Similarly to the Bandilla-Paul dispersion these normalized dispersions take values between 
zero (for a sharp value of n or 4) and unity (e.g. for uniformly spread probabilities). If 
we want to interpret 4 as phase and A as photon number, it is better to measure the Q 
uncertainty in radians and the n uncertainty in numbers which increase with increasing N .  
For the n uncertainty we also require that it yields the same results as the standard deviation 
in the limit N + 00. Thus it is natural to define the q5 uncertainty A@ as in equation (13) 
and the n uncertainty An as (see figure 1) 
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(25) 
N 
2ir 

An = - arcsinu,, . 

The last measure takes values between zero and N / 4 .  Here the mean ii is defined by 

R,exp (3 i-n =zpn(n)exp( i$n)  a 

As may easily be checked, for states with excited In) components only with n < N 
(condition of the Pegg-Bamett model) does our definition of An give almost the same 
results as the standard deviation ,/-; and the mean ii is very close to the usual 
mean (n) ,  where (n) = E, p,(n)n. On the other hand, our definition respects the circular 
topology of the  variable:^ whereas the standard deviation would give for the superposition 
oftheextremestates ( l / f i ) ( lO)+lN-l))  the value (N-l)/2,.ouruncertainty i s~An = 4. 

I 
0.2 0.4 0 .6  0 . 8  1 

R 

Figure 2. Dependence between the MUS parmeters R. and Re for various dimensions of the 
Hilbert space. N = 2, N = 4 (-); N = 3 (. . . . . .); N = 5 (- - -); N = 10 (- . -); 
N = 20 (- . . -). 

Now let us tun our attention to find the MUS. We have to construct the uncertainty 
Hamiltonian (19) and to choose conditions for means 4 and ii. A simple choice is to 
require that 

$ = O  and ii = O  (27) 

the same final results for uncertainties would also be obtained for other integer E and integer 
k, 4 = X k .  Then R, = (en) and R+ = (e@), where 
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An 

Figure 3. Relation between the MUS uncenainties An and A@ for various dimensions of 
the Hilben space. The curves ending at the horizontal axis are successively for N = 
2.3.4,s. 10.20.40. 

In the n basis these operators have the expansions 

(mle+lr) = $(6m,r+ l+  S m + ~ . r )  (29) 

where the addition of indices is taken modulo N .  Toensure the condition (27), we write in 
the uncertainty Hamiltonian = -en and i?+ -C+ so that 

(’N” 1 {mltelr)  = J ~ , ~  cos -m 

A(:) = -ttn - (1 -#+. (30) 

Changing the parameter 6 between zero and unity and finding the ground states of the 
Hamiltonian we obtain all the MUSS fulfilling the condition (27) (particularly for g = 0 we 
obtain the 140) state and for : = 1 the IO) state). We can calculate for these states the means (e,,) and (e+) and from them the uncertainties A4 and An. Let us mention that ground 
states of the uncertainty Hamiltonian (30) with t = 4 have been used in the definition of a 
discrete Q-function in 1271. 

The ground-state eigenvalue equation can be solved analytically for the lowest values 
of N ;  for higher values we can get the results numerically. Thus for N = 2 , 3 , 4  we obtain 
the MUS relation between R, and R+ in the form 

R:+R;=l  ( N = 2 , 4 )  (31) 

3R2 + 3Ri  + 2RnR+ --2R, - 2R+ = 1 

and 

( N  = 3 ) .  (32) 

These results together with the MUS relations between R, and R+ for higher N are depicted 
in figure 2. All states allowed by the quantum theory have their R,,, R+ parameters below 
this curve, i.e. with R, and R+ equal to or less than the values given by these relations. For 
N 2 3 the area of allowed R parameters is increasing with increasing N ;  it is interesting 
that for N = 3 we have a stronger constraint than for N = 2. 

Considering the relations between uncertainties An and A$ we get the results given in 
figure 3. For N = 2 and N = 4 we obtain simple results in the form of linear uncertainty 
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relations: 
n 

A $ + a A n > _  ( N = 2 )  
L 

x 17 
A @ + - A n > -  ( N = 4 ) .  

2 2 
(33) 

With N increasing we see that the An, A 4  MUS dependence approaches a limit-expressing 
then - 4 uncertainty relation in the Pegg-Barnett model. (For comparison of the An - A@ 
relation of the Pegg-Barnett model with the Dirac relation (1) and the relation (15) see 
figure~4.f However, it should be kept in mind that in the Pegg-Barnett model the states 
cannot have components ‘from the opposite side of zero’, i.e. with n % N .  Therefore the 
states approaching the uncertainty limit must have sufficiently large mean photon number, 
r7 X (n) >> An. 

0.5 1 1.5 2 2.5 
An 

Figure 4. Comparison between various An - A# uncertainty relations: the Dinc relation (1) 
(- - -), the weak relation (15) (-- . -), and the limiting relation for N cc (-). 

4. Uncertainty relations including mean photon number 

The limiting results ( N  + 00) from the last section are applicable for describing then  - @ 
uncertainties only for sufficiently high mean photon numbers, when the vacuum state IO) lies 
far outside the interval ((n) -An; ( n )  + An). However, in real situations the photon number 
uncertainty may be of the same order as the mean; therefore it makes sense to ask what is 
the form of the n - $ uncertainty relation under the condition that the mean photon number 
is given. It is clear that in this case the phase uncertainty cannot be arbitrarily small, 
even though we infinitely increase the photon number uncertainty. Recently, interesting 
extremization problems related to this problem were studied, namely the problem of finding 
states with a given finite mean photon number and minimizing phase dispersion [21,28,29], 
minimizing phase variance [19], minimizing the photon number operator and the quadrature 
operator [20], minimizing the photon number uncertainty and the sine or cosine uncertainties 
[22] or minimizing the phase dispersion and the angular momentum uncertainty of a plane 
rotator [23]. In this section we will first discuss this limit of phase uncertainty given by 
the finite mean phase number and compare .the results with phase uncertainties of several 
important states. Then we will find the relation between A@ and An in the limit of (n) + 00 

and finally we will consider the most general case for arbitrary (n). 
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4.1. Phase uncertainty versus mean photon number 

Let us now briefly recapitulate the results of minimizing the phase dispersion and the photon 
number from the point of view of our method. The minimizing states (with 4 = 0) are the 
ground states of the uncertainty Hamiltonian 

rig) = gf? - (1 - 5)e (34) 
where e is the Susskind-Glogower cosine operator. Here h+ E -e, to ensure that 4 = 0. 
If we express this Hamiltonian in the Fock basis and look for the eigenstates in the form 

we get from the eigenstate equation 

fi(t)l*) =AI*)  
an infinite set of equations for the c. coefficients 

C”+, + C,-l = (-% + -n) 24 c,  1-5  1 - {  (37) 

These equations were obtained by Bandilla er a! 1211 (using the method of Lagrange 
multipliers) and solved analytically giving 

c, =constant x Jp+,+n(jp.l) (38) 
where J is the Bessel function, p =~ -1 - &jp,,  and is the first zero point of the 
Bessel function J p .  Our numerical results can be seen in figure 5, where the dependence 
between A@ and (n) for these phase optimized states is depicted. 

For comparison, the A@ - (n) dependence is depicted also for other important states: 
the coherent states, the truncated phase states 

and the ‘coherent phase states’ (see, e.g. [30-32]) 

”=O 

where IzI < 1. For the last two states we can easily find an analytical A@ - (n) dependence: 

for the truncated phase states and 

A@ = a r c c o t m  

for the coherent phase states. The phase uncertainty of coherent states was discussed in 
[21]. It is interesting that the coherent states have a phase uncertainty (with the same ( E ) )  

smaller than both the truncated phase states and the coherent phase states which, in the 
limit of s -+ 00 or IzI + 1 approach the phase states. For (n) >> 1 the phase uncertainty 
of coherent states behaves as A@ zs I/(Zm), whereas for the thncated~and the coherent 
phase states as A@ x l/m, i.e. it is twice as large as the value of coherent states. The 
asymptotic behaviour of the phase optimized states (ground states of the Hamiltonian (34)) 
was found in [21] and can be expressed as A@ c m / ( n ) .  
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An interesting question concerns the possibility of minimizing the mean photon number 
and the phase uncertainty for some given class of states. For example, Freyberger and 
Schleich [29] discussed such minimization for the squeezed states (two-photon states). From 
the point of view of the minimum uncertainty Hamiltonian method, solving this problem 
requires just using the Ritz variational method. Let us consider the squeezed states 101, 5 )  
[331. 

la, 5 )  = b(W&C)IO) (43) 

where b(01) = e x p ( a 2  - a*;) is the displacement operator and $(<) = exp((*2’/2 - 
<@*/2) is the squeeze operator. Let the parameters 01 and ( be real, 01 2 0, so 
that we have a two-parametric class of states. The mean photon number for such 
states is (a )  = lollz + sinh’ ICI, then, given (n) we have a one-parametric set of states 
b ( ~ ~ ) s ( < ) l O ) .  We can find for which values of the squeezing parameter 5 the 
mean value of the uncertainty Hamiltonian is minimized and for this state then calculate 
the phase uncertainty A$. The results obtained by this approximative method for not too 
high (n) are in a very good agreement with the precise, values-the relative difference 
between A$ of the optimally squeezed states and A$ of the actual phase optimized states 
is at most about 0.2% for (n) < 10 and it is still less than 1% for (n) < 25. (Therefore 
in figure 5 the curve related to the optimally squeezed states is indistinguishable from the 
phase optimized states curve.) The problem of minimizing A$ with given (n)  for squeezed 
states was approximately solved requiring that the contour ellipse of such state touches the 
origin in the phase space 1291, i.e. 0 1 ~ =  4 exp(-<). 

Figure 5. Phase uncertainty for several states in dependence on the mean photon number. 
The phase optimized states and the optimal squeezed states are indisringuishoble here (-), 
(- --): coherent states. (- . -): coherent phase states, (. . . . . . I :  truncated phase states. 

Freyberger and Schleich [29] suggested that a better assumption is to require that the 
squeezed state should be displaced more, i.e. 01 > 4 exp(-t), so as to minimize the overlap 
with the vacuum state. Here we can give more accurate results, valid for arbitrary values of 
the parameters (Freyberger and Schleich assumed exp(-<) >> I); the observed behaviour 
can be seen in figure 6. For very small (n )  the origin can be inside the contour ellipse-the 
limiting case is the vacuum state. Increasing ( n )  from zero we obtain a slightly squeezed 
state, but initially with exp(-() < 1, i.e. the state is stretched in the p-direction. This 
surprising behaviour can be explained as following from the minimization of the overlap 
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-1 

- 0 . 5  0 0 .5  I 1.5 2 2.5 3 

x 

Figure 6. Optimally squeezed states with very small mean photon number. The states sm from 
the vacuum, thcn when shifted along the x-axis they itre first slightly stretched in the p-direction 
(i.e. x-squeezed). For (n) zz 0.2278 the contour curve touches the ongin; for (n) zz 2.605 the 
state is a coherent state and for larger (n) it continues as stretched in the x-direclion (p-squeezed). 

with vacuum. Further increasing (n), the C parameter returns to zero (for (n) 2.605 we 
obtain a coherent state) and then the state is stretched in the x-direction as 5 decreases 
into negative values. The ‘touching the origin’ condition 01 = f exp(-C) is achieved for 
(n)  ss 0.2278; for higher (n) the contour ellipse is actually more displaced, as considered 
in [291. 

4.2. Phase uncertainty versus number uncertainty; infinite mean photon number 

Let us now study the problem of minimizing the photon number uncertainty and the phase 
uncertainty for the case of a very large integer (n). If we are working with An sufficiently 
small, i.e. An << (n), we can find the MUS as ground states of the uncertainty Hamiltonian 

&) = th-2 - (1 - ( )e  (44) 

where fl= S-(n).  Our approximation will be based on the assumption that the eigenvalues 
of N are all integers from -cc to +CO, i.e. we can treat it as the angular momentum operator 
i, of a plane rotator. Such a problem was treated in [23]. In this case the Hamiltonian 
(44) is proportional to the Hamiltonian of a pendulum 

a mass point m constrained to move on a vertical circle with a radius r ,  g being the 
gravitational acceleration. The eigenfunctions of such Hamiltonian (in the @ representation) 
are the Mathieu functions of even order [34, 35, 231, the ground-state wavefunction being 
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The MUS uncertainties are then 

where @= -2(1 - :)/$. This relation between the An and A@ uncertainties is a limiting 
one for the harmonic oscillator-no state can reach these values, but it is possible to get 
arbitrarily close values by increasing (n )  sufficiently. This relation is depicted graphically 
in figure 7 (broken curve)-this curve is the same as the limiting'one for the Pegg-Barnett 
model. As may be checked with increasing N and by expanding (30) into a Taylor series, for 
states with zero ii and sufficiently small An the essential matrix elements of the uncertainty 
Hamiltonian (30) can be made arbitrarily close to those of (44); therefore the limiting 
relation of the finite-dimensional Hilbert space models (An << A') is the same as for the 
quantum rotator and highly excited harmonic oscillator (An << (n)). 

0.6 

0.4 

0.2 

I 
~~ . 

0.5 1 1.5 2 2.5 
An 

Figure 7. Relation between the An and A@ MUS uncertdnties under the condition of a given 
mean photon number. (- - -): the limit of (n) + 00. (- . -): A@ = xccos An: beginning 
of curves with non-integer (n). (. . . . . .): An -. A 4  dependence for the phase optimized states, 
end of the uncertainty curves. (-): An - A 4  uncertaintier for various given (n). 

We can get a very good approximation of the ground state of (44) using the Ritz 
variational method. As the test function we can take the yon Mises distribution 

in the phase representation, which is 

. _ .  . 
in the n representation. Here I, stands for the modified Bessel function. Let us,mention that 
these states minimize the uncertainty product AL,A sin @/(cos @) 12, 221; their relationship 
to the hannonic oscillator was discussed in [24]. The An - A@ relation for these states is 
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The difference between this approximate AQ and the actual limiting value is very small, at 
most about 0.9%. 

4.3. Phase uncertainty versus number uncertainty; arbitrary mean photon number 

Let us now tum our attention to the general problem of finding states which minimize the 
photon number uncertainty and the phase uncertainty with a given (n). LukS et ai [23] 
got very close to the solution of this problem (for special values of ( n ) )  starting from 
the minimizing states of the plane rotator (46) and omitting the Fourier coefficients with 
negative indices. This approximation is very good due to fast convergence of the Mathieu 
function Fourier expansion. Here we will consider the MUS states for arbitrary (n)  and 
with arbitrary precision. Such states can be found as the ground states of a two-parameter 
uncertainty Hamiltonian 

(51) 

Here the parameter 6 takes values from the interval (0.11, whereas f i  can take arbitrary 
real values, even negative ones. We can easily check that such ground states are the MUS: 
let the mean photon number ofthe ground state be (n); then no state with the same mean 
photon number and the same (C) can have smaller (i2) and thus smaller An, and similarly 
no states with the same (n) and the same (i2) can have larger (e) and thus smaller AQ. 

The resulting MUS relations for AQ and An are depicted in figure 7 and can be described 
as follows. If the mean photon number is integer, then the MUS curve begins at An = 0 
and AQ = a/Z, i.e. the beginning corresponds to a Fock state In), n = (n). If (n) is not 
an integer, say (n) = [[(n)]] + p (where [ [X I ]  is the largest integer not exceeding x) ,  then 
the state with minimum possible An uncertainty is the superposition of two neighbouring 
Fock states m l [ [ ( n ) ] ] )  + f i l [ [ ( i ) ] ]  + I). The n uncertainty is An = J p m  and 
the phase uncertainty is AQ = arccos .Jm. Therefore, all Mus curves for states with 
non-integer {n) begin at points of the curve A$ = arccos(An) for An E (0, i]. Every MUS 
curve then ends at the curve representing uncertainties An and AQ for the phase optimized 
states with given {n) .  Then no increasing of An can decrease the phase uncertainty. Note 
also that for (n) sufficiently large (and integer) MUS curves approach the quantum rotator 
limiting curve of uncertainties (47) as they should. 

A(:, @) = t i 2  + p i  - (I - oc . 

5. Conclusion 

In this paper we have discussed a possible way for  finding^ Muss for a relatively wide class 
of different uncertainties. The method.is based on solving ground-state problems of some 
‘uncertainty Hamiltonians’. It is very effective, especially when we solve this problem 
numerically and can use software routines for finding eigenvalues of matrices. When trying 
to perform analytical calculations, we usually obtain the same equatians like when using 
the method of the Lagrange multipliers. Nevertheless, the main idea of the method of 
uncertainty Hamiltonians encourages us to take advantage of the all known mathematical 
apparatus used for approximately solving the stationary Schrodinger equation. 

Our main aim here was to find the limiting relations between the photon number 
uncertainty and phase uncertainty (the definition of phase uncertainty being based on the 
Bandilla-Paul dispersion). We have approached this point in two ways: (i) working in finite- 
dimensional Hilbert spaces and then increasing the dimension to infinity (the Pegg-Bamett 
model) and (ii) considering the uncertainty relation with a fixed mean photon number and 
then increasing this quantity. 
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The results can be summarized as follows. Given a dimension of the Hilbert space 
N and the uncertainty An, we can find the limiting uncertainty A4 (which means that no 
state can have smaller A@).  Similarly, if we consider a usual harmonic oscil!ator, given 
a mean photon number (n )  and the uncertainty An, we can find the limiting value for the 
A$ uncertainty. These uncertainty relations cannot (except for a few of the simplest cases) 
be expressed as some elementary functions, but the values can be calculated with arbitrary 
precision. The A@ uncertainties calculated in the two ways approach each other in the limit 
N --f CO and (n) --f CO. 
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